\(P+12=\left(\frac{3a}{b+c}+3\right)+\left(\frac{4b}{a+c}+4\right)+\left(\frac{5c}{a+b}+5\right)\)
\(=\left(a+b+c\right)\left(\frac{3}{b+c}+\frac{4}{c+a}+\frac{5}{a+b}\right)\)
\(\ge\left(a+b+c\right).\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2\left(a+b+c\right)}=\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2}\)