Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TN

Tìm GTNN của các đa thức 

a) P = x2 - 2x + 5 

b) M = 2x2 - 6x 

 

H24
16 tháng 2 2018 lúc 12:12

a) P = x2 - 2x + 5

        = x2 - 2x + 1 - 1 + 5 

        = ( x - 1 )2 + 4

Ta có :  \(\left(x-1\right)^2\ge\)\(0\)\(\forall\)\(x\)

\(\Rightarrow\left(x-1\right)^2+4\)\(\ge\)\(0\)\(\forall\)\(x\)

Dấu " = " xảy ra <=> ( x - 1 )2 = 0

                          <=> x - 1 = 0

                           <=> x   =  1 

Vậy GTNN của P là 4 khi x = 1 .

b) M = 2x2 - 6x 

        = 2 ( x2 - 3x )

        = \(2\left[\left(x^2-2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\right]\)

        =  \(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Ta có : \(2\left(x-\frac{3}{2}\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)

       \(\Rightarrow\)\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)\(\forall\)\(x\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\left(x-\frac{3}{2}\right)^2=0\)

                          \(\Leftrightarrow\) \(\left(x-\frac{3}{2}\right)=0\)

                          \(\Leftrightarrow\)\(x=\frac{3}{2}\)

Vậy GTNN của M là \(-\frac{9}{2}\)khi \(x=\frac{3}{2}\).

        

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
T8
Xem chi tiết
T8
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
HH
Xem chi tiết
Xem chi tiết
NV
Xem chi tiết
Xem chi tiết