Chương I - Căn bậc hai. Căn bậc ba

CW

Tìm GTNN của các biểu thức sau với x,y > 0

\(C=x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\)

\(D=x+\dfrac{1}{xy\left(x+y\right)}\)

AH
30 tháng 1 2018 lúc 23:59

Lời giải:

Xét biểu thức C

Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)

\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)

Áp dụng BĐT AM-GM ta có:

\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)

\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)

Dấu bằng xảy ra khi \(x=2; y=1\)

Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)

Bình luận (2)

Các câu hỏi tương tự
VT
Xem chi tiết
DN
Xem chi tiết
TT
Xem chi tiết
SV
Xem chi tiết
NQ
Xem chi tiết
DD
Xem chi tiết
PP
Xem chi tiết
NC
Xem chi tiết
LN
Xem chi tiết