Lời giải:
Xét biểu thức C
Ta có: \(C=x+\frac{4}{(x-y)(y+1)^2}=x-y+y+\frac{4}{(x-y)(y+1)^2}\)
\(C=(x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}-1\)
Áp dụng BĐT AM-GM ta có:
\((x-y)+\frac{y+1}{2}+\frac{y+1}{2}+\frac{4}{(x-y)(y+1)^2}\geq 4\sqrt[4]{(x-y).\frac{(y+1)^2}{4}.\frac{4}{(x-y)(y+1)^2}}=4\)
\(\Rightarrow C\geq 4-1=3\Leftrightarrow C_{\min}=3\)
Dấu bằng xảy ra khi \(x=2; y=1\)
Biểu thức D không có điều kiện gì thì không có min em nhé. Trừ khi \(D=x+\frac{1}{xy(x-y)}\)