H24

Tìm GTNN của: C= x + \(\dfrac{1}{4x}\)\(\dfrac{x}{\left(2x+1\right)^{ }2}\)

KB
19 tháng 4 2022 lúc 17:22

P/s : Mik nghĩ là \(\left(2x+1\right)^2\)

\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\left[\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\right]+\dfrac{3}{4}\left(x+\dfrac{1}{4x}\right)-\dfrac{1}{8}\)

AD BĐT AM - GM ta được : \(\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\ge4\sqrt[4]{\dfrac{1}{16^3}}=\dfrac{1}{2}\)

\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{1}{4}}=1\) 

Suy ra : \(C\ge\dfrac{1}{2}+\dfrac{3}{4}.1-\dfrac{1}{8}=\dfrac{9}{8}\)

" = " \(\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
ND
Xem chi tiết
QD
Xem chi tiết
NU
Xem chi tiết