KH

tìm GTNN của bt

4x^2-x-3/16

FN
13 tháng 7 2018 lúc 7:34

\(4x^2-x-\frac{3}{16}\)

\(=\left(2x\right)^2-x+\frac{1}{4}-\frac{7}{16}\)

\(=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Mà  \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge-\frac{7}{16}\)

Dấu " = " xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\)

\(x=\frac{1}{4}\)

Vậy GTNN của biểu thức bằng \(-\frac{7}{16}\) tại \(x=\frac{1}{4}\)

Bình luận (0)
AM
13 tháng 7 2018 lúc 8:20

Gọi biểu thức trên là A. Ta có:

\(A=4x^2-x-\frac{3}{16}\)

\(A=4x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{1}{4}-\frac{3}{16}\)

\(A=\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\)

Nhận xét: \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{1}{2}\right)^2-\frac{7}{16}\ge\frac{-7}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(minA=\frac{-7}{16}\Leftrightarrow x=\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
PL
Xem chi tiết
MT
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
Xem chi tiết
TT
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết