TT

Tìm GTNN của bt

   D= x2 + y+ xy - 12x + 12y + 100

 .
7 tháng 9 2019 lúc 18:54

\(D=x^2+y^2+xy-12x+12y+100\)

\(\Rightarrow2D=x^2+x^2+y^2+y^2+2xy-24x+24y+200\)

\(\Rightarrow2D=\left(x^2+2xy+y^2\right)+\left(x^2-2.x.12+12^2\right)+\left(y^2+2.x.12+12^2\right)-88\)

\(\Rightarrow2D=\left(x+y\right)^2+\left(x-12\right)^2+\left(y+12\right)^2-88\)

\(\Rightarrow2D\ge-88\Leftrightarrow D\ge-44\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-12=0\\x+12=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=12\\y=-12\end{cases}}\)

Vậy : GTNN của \(D=-44\) tại \(x-12,y=-12\).

Bình luận (0)

Bài làm

\(D=x^2+y^2+xy-12x+12y+100\)

Nhân thêm 4 vào đẳng thức trên, ta được

\(4D=4x^2+4y^2+4xy-48x+48y+400\)

\(=\left(4x^2+2.2xy+y^2\right)-24\left(2x+y\right)+3y^2-24y+400\)

\(=\left(2x+y\right)^2-2\left(2x+y\right).12+12^2+3y^2-24y+256\)

\(=\left(2x+y-12-\right)^2+3\left(y-4\right)^2+208\ge208\)

\(\Rightarrow D\ge208:4\)

\(\Rightarrow D=52\)

Dấu " = " xảy ra <=> x = 4; y = 4

Vậy giá trị của biển thứ D = 52 khi x = 4; y = 4

~ Khôg hiểu chỗ nào hỏi mik ~
# Họk tốt #

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
CN
Xem chi tiết
CB
Xem chi tiết
NA
Xem chi tiết
TD
Xem chi tiết
DK
Xem chi tiết
LM
Xem chi tiết
LH
Xem chi tiết
HA
Xem chi tiết