HT

tìm GTNN của biểu thức \(x-\sqrt{x-2008}+\frac{1}{4}\)

HN
11 tháng 11 2016 lúc 22:07

Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT : 

\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)

Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4

Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4

Bình luận (0)
HN
11 tháng 11 2016 lúc 22:08

đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4

cái này mới đúng nhé!

Bình luận (0)
AN
11 tháng 11 2016 lúc 22:11

\(x-\sqrt{x-2008}+\frac{1}{4}=\left(\left(x-2008\right)-\frac{2\sqrt{x-2008}}{2}+\frac{1}{4}\right)+2008\)

\(=\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)

Vậy GTNN là 2008

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
DS
Xem chi tiết
TD
Xem chi tiết
NS
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
CT
Xem chi tiết
NT
Xem chi tiết