Bài 1 :
a) \(A=x^2+3\left|y-2\right|-1\ge-1\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
b) \(B=\left(2x^2\right)^4-3\ge-3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
c) \(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)
d) D ko có giá trị lớn nhất
e) \(E=-2017+\left(x-2\right)^2+\left(y+1\right)^2\ge-2017\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
g) \(G=\left|x\right|+\left|x-2\right|+3\)
\(G=\left|x\right|+\left|2-x\right|+3\)
\(G\ge\left|x+2-x\right|+3=\left|2\right|+3=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le2\end{cases}\Leftrightarrow}0\le x\le2}\)