PL

tìm GTNN của biểu thức S= ab+\(\dfrac{1}{ab}\) biết a,b > 0 và a+b ≤ 1

giúp mình với ạ

 

PG
1 tháng 8 2021 lúc 21:15

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

Bình luận (1)
H24
1 tháng 8 2021 lúc 21:38

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

 

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
GP
Xem chi tiết
E2
Xem chi tiết
PL
Xem chi tiết
PK
Xem chi tiết
TM
Xem chi tiết
PL
Xem chi tiết
NV
Xem chi tiết
PL
Xem chi tiết