Chương III - Hệ hai phương trình bậc nhất hai ẩn

NP

Tìm GTNN của biểu thức P=x2+xy+y2-2x-3y+2010 khi các số thực x,y thay đổi. Giá trị nhỏ nhất đó đạt được tại các giá trị nào của x và y.

ND
7 tháng 6 2017 lúc 20:11

Ta có: P= \(x^2+xy+y^2-2x-3y+2010\)

\(\Leftrightarrow\) 4P= \(4\left(x^2+xy+y^2-2x-3y+2010\right)\)

= \(4x^2+4xy+4y^2-8x-12y+8040\)

= \(\left(4x^2+y^2+4+4xy-8x-8y\right)+3y^2-8y+8036\)

= \(\left(2x+y-2\right)^2+3y^2-8y+\dfrac{16}{3}-\dfrac{16}{3}+8036\)

= \(\left(2x+y-2\right)^2+3\left(y^2-\dfrac{8}{3}y+\dfrac{16}{9}\right)+\dfrac{24092}{3}\)

= \(\left(2x+y-2\right)^2+3\left(y-\dfrac{4}{3}\right)^2+\dfrac{24092}{3}\) \(\geq\) \(\dfrac{24092}{3}\)

\(\Rightarrow\) 4P \(\geq\) \(\dfrac{24092}{3}\) \(\Rightarrow\) P \(\geq\) \(\dfrac{6023}{3}\)

Dấu = xảy ra khi \(\begin{cases} (2x+y-2)^{2}=0\\ (y-\dfrac{4}{3})^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x+y-2=0\\ y-\dfrac{4}{3}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(y-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(\dfrac{4}{3}-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)

Từ đó suy ra Min P= \(\dfrac{6023}{3}\) khi \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)

Chúc bạn học tốt. haha

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
DT
Xem chi tiết
AB
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
GH
Xem chi tiết