NL

tìm GTNN của biểu thức \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\) với a,b>0 và \(a+b\le4\)

HN
12 tháng 6 2016 lúc 19:27

Ta có : \(4\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le4\)

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bạn có thể chứng minh bằng biến đổi tương đương)

Ta có :\(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=\left(\frac{2}{a^2+b^2}+\frac{1}{ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}\ge\frac{2.4}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\ge\frac{8}{4^2}+2.8+\frac{2}{4}=17\)Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a^2b^2=16\\0< a+b\le4\end{cases}\Leftrightarrow}a=b=2\)

Vậy \(MinP=17\Leftrightarrow a=b=2\)

Bình luận (0)

Các câu hỏi tương tự
PD
Xem chi tiết
ND
Xem chi tiết
KB
Xem chi tiết
BA
Xem chi tiết
KB
Xem chi tiết
PD
Xem chi tiết
TB
Xem chi tiết
LH
Xem chi tiết
TA
Xem chi tiết