NH

Tìm GTNN của biểu thức 

B=4x^2+4x-6
C=x^2+6x+11

D=x^2-3x+1

 

OP
3 tháng 8 2016 lúc 9:35

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

Bình luận (0)
NV
3 tháng 8 2016 lúc 9:38

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

Bình luận (0)
TN
3 tháng 8 2016 lúc 9:40

bài a của  o0o I am a studious person o0o có lẽ sai

\(B=4x^2+4x-6=\left(4x^2+4x+1\right)-7=\left(2x+1\right)^2-7\)

có:\(\left(2x+1\right)^2\ge0\)

vậy GTNN của B = -7 tại x = -1/2

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TC
Xem chi tiết
AC
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
HB
Xem chi tiết
HT
Xem chi tiết