\(A=\left(9y^2-6xy+12y\right)+4x^2-16x+2012\)
\(=\left[\left(3y\right)^2-2.3y\left(x-2\right)+\left(x-2\right)^2\right]-\left(x-2\right)^2+4x^2-16x+2012\)
\(=\left(3y-x+2\right)^2+3x^2-12x+2008\)
\(=\left(3y-x+2\right)^2+3\left(x^2-2.x.2+4\right)-3.4+2008\)
\(=\left(3y-x+2\right)^2+3\left(x-2\right)^2+1996\ge1996\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3y-x+2=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=2\end{cases}}\)