VH

Tìm GTNN của biểu thức A= \(x\left(x+1\right)\left(x^2+x-4\right)\)

KN
21 tháng 2 2020 lúc 19:20

\(A=x\left(x+1\right)\left(x^2+x-4\right)\)

\(=\left(x^2+x\right)\left(x^2+x-4\right)\)

Đặt \(x^2+x=k\)

Lúc đó \(A=k\left(k-4\right)\)

\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)

(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
MN
Xem chi tiết
PB
Xem chi tiết
JL
Xem chi tiết
PT
Xem chi tiết
MS
Xem chi tiết
NC
Xem chi tiết
TN
Xem chi tiết
MS
Xem chi tiết