Trần Thanh PhươngtthNguyễn Văn ĐạtNguyễn Việt LâmNguyễn Huy ThắngAkai Haruma giúp vs
Thêm đk a, b > 0
\(A\ge\frac{2\sqrt{xa}.2\sqrt{bx}}{x}=\frac{4x\sqrt{ab}}{x}=4\sqrt{ab}\)
Đẳng thức xảy ra khi a = b = x
P/s: True?
Ta có \(A=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=\left(x+\frac{ab}{x}\right)+\left(a+b\right)\)
Theo bất đẳng thức Cauchy: \(x+\frac{ab}{x}\ge2\sqrt{ab}\) nên \(A\ge2\sqrt{ab}+a+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Vậy \(A_{min}=\left(\sqrt{a}+\sqrt{b}\right)^2\) khi và chỉ khi\(\left\{{}\begin{matrix}x=\frac{a}{b}\\x>0\end{matrix}\right.\Leftrightarrow x=\sqrt{ab}}\)