CD

Tìm GTNN của A= \(\frac{2x^2-16x+43 }{x^2-8x+22}\)

TN
6 tháng 1 2018 lúc 22:13

\(A=\frac{2x^2-16x+43}{x^2-8x+22}\Leftrightarrow Ax^2-8Ax+22A-2x^2+16x-43=0\)

\(\Leftrightarrow x^2\left(A-2\right)-x\left(8A-16\right)+22A-43=0\)

\(\Delta=\left[-\left(8A-16\right)\right]^2-4\left(A-2\right)\left(22A-43\right)\)

\(=-24A^2+92A-88\)\(\Delta\) có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow-24A^2+92A-88\ge0\)\(\Leftrightarrow6A^2-23A+22\le0\)

\(\Leftrightarrow\left(A-2\right)\left(6A-11\right)\le0\)\(\Rightarrow\frac{11}{6}\le A\le2\)

Bình luận (0)
BA
7 tháng 1 2018 lúc 8:43

Ta có \(A=\frac{2x^2-16x+43}{x^2-8x+22}\)

\(\Leftrightarrow\frac{2x^2-16x+44-1}{x^2-8x+22}=\frac{2x^2-16x+44}{x^2-8x+22}-\frac{1}{x^2-8x+22}\)

\(\Leftrightarrow\frac{2.\left(x^2-8x+22\right)}{x^2-8x+22}-\frac{1}{x^2-8x+22}=2-\frac{1}{x^2-8x+22}\)

Muốn A có gtnn  thì \(\frac{1}{x^2-8x+22}\)Phải lớn nhất 

Suy Ra \(x^2-8x+22\)Phải nhỏ nhất 

\(\Leftrightarrow x^2-8x+22=x^2-8x+16+6=\left(x-4\right)^2+6\)

Vậy GTNN của \(x^2-8x+22\)Là 6

Suy Ra GTLN của \(\frac{1}{x^2-8x+22}\) Là \(\frac{1}{6}\)

Vậy GTNN của \(A=2-\frac{1}{6}=\frac{11}{6}\)Khi x-4=0 => x=4

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PA
Xem chi tiết
HV
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
KH
Xem chi tiết
DL
Xem chi tiết
VT
Xem chi tiết
TV
Xem chi tiết