SN

tìm GTNN của A =  |3-2x|+|5-2x|+3

TL
22 tháng 7 2015 lúc 13:14

Áp dụng BĐT: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0 

Ta có A = |3 -2x| + |5 - 2x| + 3 = |3 - 2x| + |2x - 5| + 3 \(\ge\) |3 - 2x + 2x - 5| + 3 = 2 + 3 = 5

Dấu "=" xảy ra khi (3 - 2x).(2x - 5) \(\ge\) 0 hay (2x - 3). (2x - 5) \(\le\) 0 

Vì 2x - 3 > 2x - 5 nên 2x - 3 \(\ge\) 0 và 2x - 5 \(\le\) 0

=> x \(\le\) 5/2 và x \(\ge\) 3/2 => 3/2 \(\le\) x \(\le\) 5/2

Vậy Min A = 5 khi  3/2 \(\le\) x \(\le\) 5/2

 

Bình luận (0)
MT
22 tháng 7 2015 lúc 12:18

ta có

|3-2x|+|5-2x|+3=|2x-3|+|5-2x|+3\(\ge\)|2x-3+5-2x|+3=2+3=5

Vậy GTNN của |3-2x|+|5-2x|+3 là 5 tại:

2x-3\(\ge\)0 và 5-2x\(\ge\)0

=>x\(\ge\)3/2 và x\(\le\)5/2

=>3/2\(\le\)x\(\le\)5/2

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
TK
Xem chi tiết
CD
Xem chi tiết
PX
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
DH
Xem chi tiết
WC
Xem chi tiết