GTNN : \(4x^2-3x+\frac{1}{4x}+2014\)với x>0
` P = ( (3+x)/(3-x) - (3-x)/(3+x) - (4x^2)/( x^2-9) ) . ( (5)/(3-x) - (4x+2)/(3x-x^2) ) `
a) Rút gọn
b) Tính P với `x^2 - 4x + 3 = 0 `
c) Tìm x để P > 0
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P = -4
g) Tìm GTNN của P với x thuộc Z
h) Tìm x để P > 4x
tìm GTNN
A= 4x + \(\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\)với x>0
1. Tìm GTNN của A=\(\frac{16x^2+4x+1}{2x}\) với x>0
2. Tìm GTNN của B=\(\frac{1}{a}+\frac{1}{b}\) với a>0, b>0 và a+b=10
Tìm GTNN của biểu thức: \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2016\) với x > 0
1/GTNN 4x^2+4x-1
2/căn(3x^2-4x +3)=1-2x . biết x=trừ căn a . TÌM a?
help. !!!
Với x>0 tìm giá trị nhỏ nhất của M = 4x2-3x+\(\frac{1}{4x}\)+2019
Với x>0 , tìm giá trị nhỏ nhất của biểu thức : \(M=4x^2-3x+\frac{1}{4x}+2011\)
Tìm GTNN của bt sau : \(\frac{4x^2-3x+1}{4x+2015}\)