VA

Tim GTNN A= x^2-5x+1

GTLN B=1-x^2+3x

DT
5 tháng 8 2016 lúc 8:46

\(A=x^2-5x+1=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{21}{4}=\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)

nên \(\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Vậy \(Min_{x^2-5x+1}=-\frac{21}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

\(B=1-x^2+3x=-\left(x^2-3x-1\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)

nên \(-\left(x-\frac{3}{2}\right)^2\le0\)

do đó \(-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Vậy \(Max_{1-x^2+3x}=\frac{13}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
LK
Xem chi tiết
DC
Xem chi tiết
TN
Xem chi tiết
AC
Xem chi tiết
ND
Xem chi tiết