\(A=\dfrac{8x+3}{4x^2+1}=\dfrac{4\left(4x^2+1\right)-\left(4x-1\right)^2}{4x^2+1}=4-\dfrac{\left(4x-1\right)^2}{4x^2+1}\le4\)
Vậy GTLN của A là 4 . Dấu " = " xảy ra khi \(\left(4x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{4}\)
\(\text{a)* }A=\dfrac{8x+3}{4x^2+1}=\dfrac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}\\ =\dfrac{4x^2+8x+4}{4x^2+1}-\dfrac{4x^2+1}{4x^2+1}=\dfrac{4\left(x+1\right)^2}{4x^2+1}-1\ge-1\)
Dấu \("="\) xảy ra khi \(\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
\(\text{* }A=\dfrac{8x+3}{4x^2+1}=\dfrac{-\left(16x^2-8x+1\right)+\left(16x^2+4\right)}{4x^2+1}\\ =\dfrac{-\left(16x^2-8x+1\right)}{4x^2+1}+\dfrac{16x^2+4}{4x^2+1}\\ =\dfrac{-\left(16x^2-8x+1\right)}{4x^2+1}+\dfrac{4\left(4x^2+1\right)}{4x^2+1}\\ =\dfrac{-\left(4x-1\right)^2}{4x^2+1}+4\)
Dấu \("="\) xảy ra khi \(4x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(A_{Min}=-1\Leftrightarrow x=-1\)
\(A_{Max}=4\Leftrightarrow x=\dfrac{1}{4}\)
\(B=\dfrac{x}{\left(x+2010\right)^2}\overset{AM-GM}{\ge}\dfrac{x}{8020x}=\dfrac{1}{8020}\)
Dấu "=" xảy ra khi: \(x=2010\)