`TXĐ: R`
Ta có: `-1 <= sin(x+ \pi/3) <= 1`
`<=>0 <= sin^4 (x+\pi/3) <= 1`
`<=>2 <= y <= 3`
`=>y_[mi n]=2<=>sin(x +\pi/3)=0<=>x= -\pi/3+k\pi` `(k in ZZ)`
`y_[max]=3<=>sin(x +\pi/3)=1<=>x=\pi/6 +k2\pi` `(k in ZZ)`
`TXĐ: R`
Ta có: `-1 <= sin(x+ \pi/3) <= 1`
`<=>0 <= sin^4 (x+\pi/3) <= 1`
`<=>2 <= y <= 3`
`=>y_[mi n]=2<=>sin(x +\pi/3)=0<=>x= -\pi/3+k\pi` `(k in ZZ)`
`y_[max]=3<=>sin(x +\pi/3)=1<=>x=\pi/6 +k2\pi` `(k in ZZ)`
24. Tìm GTLN của hàm số: \(y=3\cos\left(x-\dfrac{\pi}{2}\right)+1\)
26. a) Tìm GTLN của hàm số: \(y=\cos2x+\sin2x\)
b) Giải PT: \(\sin x+\sqrt{3}\cos x=1\)
Tìm giá trị max, min của các hàm số sau:
1, y= 2 - \(\sin\left(\dfrac{3\pi}{2}+x\right)\cos\left(\dfrac{\pi}{2}+x\right)\)
2, y= \(\sqrt{5-2\sin^2x.\cos^2x}\)
Hàm số nào dưới đây đồng biến trên khoảng \(\left(0;\dfrac{5\pi}{6}\right)\) (giải thích đáp án)
A. y = sinx
B. y = cosx
C. y = sin\(\left(x-\dfrac{\pi}{3}\right)\)
D. y = sin\(\left(x+\dfrac{\pi}{3}\right)\)
1. Tìm GTNN GTLN của hàm số y=\(\sqrt{3}cosx-sinx+\sqrt{2}\)
2. Xét tính chãn lẽ của hàm số \(y=\left|tanx\right|+sin\left(\frac{3\pi}{2}+x\right)\)
2. Gọi T là tổng của nghiệm âm lớn nhất và nghiệm dương bé nhất của phương trình \(sin4x+cos5x=0\). Giá trị của T là?
Tìm GTLN và GTNN của hàm số:
y=\(\sqrt{5-2sin^2xcos^2x}\)
y= sinx trên \(\left[\frac{\pi}{6};\frac{3\pi}{4}\right]\)
Rút gọn biểu thức:
Chứng minh biểu thức sau không phụ thuộc vào x:
Q = \(sinx-sin\left(x+\dfrac{\pi}{5}\right)+sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)+sin\left(x+\dfrac{4\pi}{5}\right)\)
tìm tập xác định của hàm số
a) y = \(cot\left(2x+\dfrac{\pi}{4}\right)\)
b) y = \(cot\left(\dfrac{\pi}{3}-x\right)\)
tìm số nghiệm pt: \(sin\left(x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\) trên \(\left[-\Pi;-2\Pi\right]\)