Ta có:
\(P=f\left(x\right)=-3x^2-x+4,\left(a=-3,b=-1,c=4\right)\)có đồ thị là 1 Parapol có bề lõm hướng xuống vì \(a< 0\)
\(\Rightarrow P\) đạt GTLN tại \(x=-\frac{b}{2a}=-\frac{-1}{2.\left(-3\right)}=-\frac{1}{6}\)
\(\Rightarrow maxP=f\left(-\frac{1}{6}\right)=-3\left(-\frac{1}{6}\right)^2-\left(-\frac{1}{6}\right)+4=\frac{49}{12}\).
Vì \(-1\le-\frac{1}{6}\le3\) nên P sẽ tăng khi \(-1\le x< -\frac{1}{6}\) và P sẽ giảm khi \(-\frac{1}{6}< x\le3\)
\(f\left(-1\right)=-3\left(-1\right)^2-\left(-1\right)+4=2\)
\(f\left(3\right)=-3\left(3\right)^2-\left(3\right)+4=-26\)
\(\Rightarrow minP=f\left(3\right)=-26\)