Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

CD

Tìm GTLN và GTNN của A = \(\frac{3-4x}{x^2+1}\) 

 

TT
31 tháng 1 2017 lúc 14:58

+Tim GTNN cua A:

\(A=\frac{3-4x}{x^2+1}\)

Xet : 3-4x=x^2-4x+4-x^2-1=(x-2)^2-(x^2+1)

\(\Rightarrow\frac{\left(x-2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-\frac{x^2+1}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\)

Ma: \(\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

\(\Rightarrow\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\)

Vay MinA=-1 va x=2

+ Tim GTLN cua A:

\(A=\frac{3-4x}{x^2+1}\)

Xet : 3-4x=4x^2+4-4x^2-4x-1=(4x^2+4)-(4x^2+4x+1)=4(x^2+1)-(2x+1)^2

\(\Rightarrow\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=\frac{4\left(x^2+1\right)}{x^2+1}-\frac{\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Ma : \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Vay MaxA=4 va x=-1/2 

k nhe

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
NT
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
MN
Xem chi tiết
DN
Xem chi tiết
NM
Xem chi tiết
KT
Xem chi tiết