Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NG

tìm GTLN hoặc NN

\(H=X^2+\left(X-2\right)\left(3X-1\right)\)

FN
20 tháng 8 2018 lúc 16:14

\(H=x^2+\left(x-2\right)\left(3x-1\right)\)

\(=x^2+3x^2-x-6x+2\)

\(=4x^2-7x+2\)

\(=\left(2x\right)^2-2\cdot2\cdot\frac{7}{4}x+\left(\frac{7}{4}\right)^2-\frac{17}{16}\)

\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)

Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge-\frac{17}{16}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left(2x-\frac{7}{4}\right)^2=0\)

\(\Leftrightarrow x=\frac{7}{8}\)

Vậy \(H_{min}=-\frac{17}{16}\)tại \(x=\frac{7}{8}\)

Bình luận (0)
LA
20 tháng 8 2018 lúc 16:16

\(x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)

\(=4x^2-7x+\frac{49}{16}-\frac{17}{16}\)

\(=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\)

Vì: \(\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{17}{16}\forall x\)

=> Min H =17/16 tại \(\left(2x-\frac{7}{4}\right)^2=0\Rightarrow x=\frac{7}{8}\)

=.= hok tốt!!

Bình luận (0)
DH
20 tháng 8 2018 lúc 16:21

\(H=x^2+\left(x-2\right)\left(3x-1\right)=x^2+3x^2-x-6x+2=4x^2-7x+2\)

                               \(=4x^2-2.2x.\frac{7}{4}+\frac{49}{16}-\frac{17}{16}=\left(2x-\frac{7}{4}\right)^2-\frac{17}{16}\ge\frac{-17}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{7}{4}=0\Leftrightarrow x=\frac{7}{8}\)

Vậy HMin = -17/16 khi và chỉ khi x = 7/8

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
NL
Xem chi tiết
YM
Xem chi tiết
XC
Xem chi tiết
NG
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NG
Xem chi tiết