Bài 1:
$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$
$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$
Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$
$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$
$\Leftrightarrow x=y=\frac{-1}{2}$
Bài 2:
$B=x^2+9y^2+4z^2-2x+12y-4z+20$
$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$
$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$
$\Rightarrow B\geq 0+0+0+14=14$
Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$
$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$
Bài 3:
$C=-x^2-26y^2+10xy-20y-150$
$-C=x^2+26y^2-10xy+20y+150$
$=(x^2+25y^2-10xy)+(y^2+20y+10^2)+50$
$=(x-5y)^2+(y+10)^2+50$
Vì $(x-5y)^2\geq 0; (y+10)^2\geq 0$ với mọi $x,y$
$\Rightarrow -C=(x-5y)^2+(y+10)^2+50\geq 0+0+50=50$
$\Rightarrow C\leq -50$
Vậy $C_{\max}=-50$. Giá trị này đạt được khi $x-5y=y+10=0$
$\Leftrightarrow y=-10; x=-50$