ta có \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)
\(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)
do đó xyz(x+y)(y+z)(z+x)\(\le\frac{1}{27}\cdot\frac{8}{27}=\frac{8}{729}\)
==>GTLN của biểu thức trên là \(\frac{8}{729}\)
cosy ra giá trị nhỏ nhất chứ có ra lớn nhất đâu
sai nhá, tôi thi cấp huyện gặp bài này rồi