\(B=\left[\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\right]+\left[\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4\right]+\)
\(\left[\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4\right]\)\(\ge\frac{\left(a+b+2\sqrt{ab}+c+d+2\sqrt{cd}\right)^2+\left(a+c+2\sqrt{ac}+b+d+2\sqrt{bd}\right)^2+\left(a+d+2\sqrt{ad}+b+c+2\sqrt{bc}\right)^2}{2}\)
\(\ge\frac{\left(3a+3b+3c+3d+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}+2\sqrt{ad}+2\sqrt{cd}+2\sqrt{bd}\right)^2}{6}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{b}+\sqrt{c}\right)^2+\left(\sqrt{c}+\sqrt{d}\right)^2+\left(\sqrt{a}+\sqrt{c}\right)^2+\left(\sqrt{a}+\sqrt{d}\right)^2+\left(\sqrt{b}+\sqrt{d}\right)^2}{6}\)
tiếp tục sử dụng như hỗi nãy ta có:
\(\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)^2}{2}\)