LD

Tìm GTLN của biểu thức:\(A=\frac{2m^2-4m+5}{m^2-2m+2}\)

H24
23 tháng 11 2018 lúc 18:58

Ta có: \(A=\frac{2m^2-4m+5}{m^2-2m+2}\)

\(=\frac{2m^2-4m+2+3}{m^2-2m+1+1}=\frac{2\left(m^2-2m+1\right)+3}{\left(m^2-2m+1\right)+1}\)

\(=\frac{2\left(m-1\right)^2+3}{\left(m-1\right)^2+1}\ge\frac{3}{1}=3\) (do \(\left(m-1\right)^2\ge0\))

Dấu "=" xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)

Vậy \(A_{min}=3\Leftrightarrow m=1\)

Bình luận (0)
BH
14 tháng 8 2020 lúc 21:56

\(A=2+\frac{1}{m^2-2m+1+1}=2+\frac{1}{\left(m-1\right)^2+1}\)

\(\left(m-1\right)^2+1\ge1\Leftrightarrow\frac{1}{\left(m-1\right)^2+1}\le1\)

\(\Rightarrow A\le3\)

 \("="\Leftrightarrow m=1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 8 2020 lúc 5:46

chết làm lộn r-_-

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CN
Xem chi tiết
CN
Xem chi tiết
CN
Xem chi tiết
PH
Xem chi tiết
AM
Xem chi tiết
TZ
Xem chi tiết
TZ
Xem chi tiết
NA
Xem chi tiết
ST
Xem chi tiết