Cho a,b,c > 0 thoả mãn: a+2b+3c =6. Tìm GTLN của biểu thức sau:
P= abc+ab+bc+ca-b-2c
Cho a,b,c >0 thoả mãn a+b+c=2
tìm GTLN của căn 2a+bc + căn 2b+ca + căn 2c+ab
cho các số thực a;b;c thỏa mãn a+b+c\(\le6\)tìm gtln của biểu thức P=\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)
Cho 3 số dương a,b,c thỏa mãn abc=1
tìm GTNN của biểu thức \(p=\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
cho các số a,b,c thoả mãn a+b+c+ab+bc+ca+abc=0
tính P=\(\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ca}\)
cho các số a,b,c thoả mãn a+2b+2c=6
Tìm max của biểu thức A=ab+ac+2bc
Cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2+ab+bc+ca=6\)
Tìm giá trị lớn nhất của biểu thức \(P=\left(2a+bc\right)\left(2b+ca\right)\left(2c+ab\right)\)
với a , b ,c là các số dương thỏa mãn diểu kiện a+b+c=2 . Tìm GTLN của biểu thức \(Q=\sqrt{2a+bc}+\sqrt{2b+ac}+\sqrt{2c+ab}\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)