H24

Tìm gtln của biểu thức B=(3(x+1))/(x^3+x^2+x+1)

NN
7 tháng 4 2020 lúc 16:04

\(ĐKXĐ:x\ne-1\)

\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{\left(x^3+x^2\right)+\left(x+1\right)}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)\(\Leftrightarrow B=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)\(\Leftrightarrow B=\frac{3}{x^2+1}\)

Vì \(x^2\ge0\)\(\Rightarrow x^2+1\ge1\)\(\Rightarrow\frac{3}{x^2+1}\le3\)\(\Rightarrow B\le3\)

Dấu " = " xảy ra \(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)( thoả mãn ĐKXĐ )

Vậy \(maxB=3\)\(\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
19 tháng 4 2020 lúc 17:36

\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+1\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\frac{3}{x^2+1}\)

Vì \(x^2\ge0\Rightarrow x^2+1\ge1\)

Mà \(\frac{3}{x^2+1}\le3\)Nên \(\Rightarrow B\le3\)

Dấu ''='' xảy ra <=> x = 0 

Vậy \(Max_B=3\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
HD
Xem chi tiết
PN
Xem chi tiết
KS
Xem chi tiết
PL
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết