NN

Tìm GTLN của biểu thức (2x-3)(5-x) 

MA
4 tháng 2 2022 lúc 11:56

Ta có: `(2x -3)(5-x) `

`= 10x - 2x^2 - 15 + 3x`

`= -2x^2 + 13x - 15`

`= -2(x^2 -13/2 x +15/2)`

`= -2[(x^2 - 2x . 13/4+ 169/16) -49/16]`

`= -2[(x-13/4)^2 - 49/16]`

`= -2(x-13/4)^2 +49/8`

Vì `(x-13/4)^2 ge 0` với mọi `x`

`<=> -2x(x-13/4)^2 le 0` với mọi `x`

`<=> -2x(x-13/4)^2 + 49/8 le 49/8` với mọi `x`

Dấu "=" xảy ra khi: `x-13/4 =0 <=> x= 13/4`

Vậy giá trị lớn nhất của biểu thức là `49/8` khi `x= 13/4`

 

Bình luận (0)
TH
4 tháng 2 2022 lúc 12:01

(2x-3)(5-x)=\(10x-2x^2-15+3x=-2x^2+13x-15=-2x^2+13x-\dfrac{169}{8}+\dfrac{169}{8}=-\left(2x^2-13x+\dfrac{169}{9}\right)+\dfrac{169}{8}=-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2+\dfrac{169}{8}\)

Ta có \(\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2\ge0=>-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)\le0=>\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)+\dfrac{169}{8}\le\dfrac{169}{8}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VL
Xem chi tiết
PT
Xem chi tiết
HC
Xem chi tiết
BP
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
MP
Xem chi tiết