Ta có: `(2x -3)(5-x) `
`= 10x - 2x^2 - 15 + 3x`
`= -2x^2 + 13x - 15`
`= -2(x^2 -13/2 x +15/2)`
`= -2[(x^2 - 2x . 13/4+ 169/16) -49/16]`
`= -2[(x-13/4)^2 - 49/16]`
`= -2(x-13/4)^2 +49/8`
Vì `(x-13/4)^2 ge 0` với mọi `x`
`<=> -2x(x-13/4)^2 le 0` với mọi `x`
`<=> -2x(x-13/4)^2 + 49/8 le 49/8` với mọi `x`
Dấu "=" xảy ra khi: `x-13/4 =0 <=> x= 13/4`
Vậy giá trị lớn nhất của biểu thức là `49/8` khi `x= 13/4`
(2x-3)(5-x)=\(10x-2x^2-15+3x=-2x^2+13x-15=-2x^2+13x-\dfrac{169}{8}+\dfrac{169}{8}=-\left(2x^2-13x+\dfrac{169}{9}\right)+\dfrac{169}{8}=-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2+\dfrac{169}{8}\)
Ta có \(\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2\ge0=>-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)\le0=>\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)+\dfrac{169}{8}\le\dfrac{169}{8}\)