Ta có \(A=3+\frac{1}{\left(x+1\right)^2+2}\).
A đạt giá trị lớn nhất khi \(\left(x+1\right)^2+2\) đạt giá trị nhỏ nhất.
Điều này xảy ra khi \(x=-1\) và khi đó \(A=\frac{7}{2}\).
Vậy giá trị lớn nhất của A là \(\frac{7}{2}\)
\(A=\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3x^2+6x+9+1}{x^2+2x+3}=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\frac{1}{x^2+2x+3}\)
=\(\frac{1}{\left(x^2+2x+1\right)+2}\)\(=\frac{1}{\left(x+1\right)^2}+\frac{1}{2}\)
\(\Rightarrow\)MaxA=\(\frac{1}{2}\) khi x=-1
Chú ý:Max là giá trị lớn nhất nha bạn