a: Để M là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-1;1\right\}\)
b: \(N=\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\cdot\left(x^2+4\right)}=\dfrac{x+2}{x-2}\)
Để N là số nguyên thì \(x-2+4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)