Lời giải:
$M=\frac{8x+12}{x^2+4}$
$\Rightarrow M(x^2+4)=8x+12$
$\Rightarrow Mx^2-8x+(4M-12)=0(*)$
Vì $M$ tồn tại nên dấu "=" của PT luôn xảy ra, tức là PT $(*)$ luôn có nghiệm.
$\Rightarrow \Delta'=16-M(4M-12)\geq 0$
$\Leftrightarrow 4-M(M-3)\geq 0$
$\Leftrightarrow M^2+3M-4\leq 0$
$\Leftrightarrow (M-1)(M+4)\leq 0$
$\Leftrightarrow -4\leq M\leq 1$
Vậy $M_{\min}=-4; M_{\max}=1$