DH

Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: \(A=\frac{3x^2-2x+3}{x^2+1}\)

 

EC
1 tháng 1 2020 lúc 11:09

Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)

\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)

\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)

\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 2 khi x = 1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TQ
Xem chi tiết
AA
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết
KS
Xem chi tiết
DD
Xem chi tiết
DT
Xem chi tiết
LG
Xem chi tiết
TL
Xem chi tiết