DX

tìm giá trị nhỏ nhất của

M=\(\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)

LH
24 tháng 10 2016 lúc 19:55

\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)

\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)

\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)

TH1 : \(x< -3;\)có :

\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=-3-x+2-x\)

\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)

TH2 : \(-3\le x\le2;\)có :

\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=x+2+2-x=4\)

TH3: \(x>2\)

\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)

\(\Rightarrow Min_M=4\)

\(\Leftrightarrow-3\le x\le2\)

Vậy ...

Tại hạ chưa học lớp 9 nên làm cách quèn :)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
MC
Xem chi tiết
FA
Xem chi tiết
H24
Xem chi tiết
CD
Xem chi tiết
HN
Xem chi tiết
CC
Xem chi tiết
ER
Xem chi tiết
DT
Xem chi tiết