PA

Tìm giá trị nhỏ nhất của
a) \(A=\dfrac{9x}{2-x}+\dfrac{2}{x} \) (0<x<2)

b) \(y=\dfrac{x}{1-x}+\dfrac{5}{x} \) ; 0<x<1
c) \(C=\dfrac{2}{1-x}+\dfrac{1}{x} \)với 0<x<1

H24
27 tháng 6 2021 lúc 16:57

`A=(9(x-2)+18)/(2-x)+2/x`

`=-9+18/(2-x)+2/x`

`=-9+2(9/(2-x)+1/x)`

Áp dụng bđt cosi-schwarts ta có:

`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`

`=>A>=16-9=7`

Dấu "=" xảy ra khi `3/(2-x)=1/x`

`<=>3x=2-x`

`<=>4x=2<=>x=1/2(tm)`

b

`y=x/(1-x)+5/x`

`=(x-1+1)/(1-x)+5/x`

`=1/(1-x)+5/x-1`

Áp dụng cosi-schwarts ta có:

`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`

`=>y>=5+2sqrt5`

Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`

`<=>x=sqrt5-sqrt5x`

`<=>x(1+sqrt5)=sqrt5`

`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`

`c)C=2/(1-x)+1/x`

Áp dụng bđt cosi schwarts ta có:

`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`

Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`

`<=>sqrt2x=1-x`

`<=>x(sqrt2+1)=1`

`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
KG
Xem chi tiết
LL
Xem chi tiết
HL
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
HM
Xem chi tiết
PP
Xem chi tiết