Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{1a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9:a}{(a+b):a}=1+\frac{9}{a+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất => \(\frac{9}{a+\frac{b}{a}}\)nhỏ nhất =>\(a+\frac{b}{a}\)lớn nhất => b = 9 , a = 1
Vậy Amin = \(\frac{19}{1+9}=\frac{19}{10}=1,9\)