\(M=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để M nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất <=> \(1+\frac{b}{a}\) lớn nhất <=> \(\frac{b}{a}\) lớn nhất. Vì 0< a < 10; 0 \(\le\) b < 10
=> b = 9; a = 1
Vậy M nhỏ nhất = 19/10