TD

Tìm giá trị nhỏ nhất của hàm số: $y=2x^{2} +\dfrac{5}{x+1}$, $x\ge 2$.

ND
12 tháng 5 2021 lúc 17:24

Ta có: \(y-\frac{29}{3}=2x^2+\frac{5}{x+1}-\frac{29}{3}\)

\(=\frac{6x^2\left(x+1\right)+15-29\left(x+1\right)}{3\left(x+1\right)}\)

\(=\frac{6x^3+6x^2+15-29x-29}{3\left(x+1\right)}\)

\(=\frac{6x^3+6x^2-29x-14}{3\left(x+1\right)}\)

\(=\frac{\left(6x^3-12x^2\right)+\left(18x^2-36x\right)+\left(7x-14\right)}{3\left(x+1\right)}\)

\(=\frac{\left(x-2\right)\left(6x^2+18x+7\right)}{3\left(x+1\right)}\ge0\left(\forall x\right)\) vì \(x+1\ge3>0\)

\(\Rightarrow y\ge\frac{29}{3}\)

Dấu "=" xảy ra khi: \(x=2\)

Vậy \(min_y=\frac{29}{3}\Leftrightarrow x=2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết