VH

Tìm giá trị nhỏ nhất của các BT sau

a) 5x^2-8x+5

b)4x^2+6x+15

c)9x^2-8x+1

d)x^2+3x+7

LP
4 tháng 7 2019 lúc 20:35

a) 5x2 - 8x + 5

= 5(x2 - 8/5.x + 1)

= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)

= 5[(x-4/5)2 + 9/25]

= 5.(x-4/5)+ 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....

Còn lại tương tự nha bạn

Bình luận (0)
NA
4 tháng 7 2019 lúc 20:42

TL:

a) \(5x^2-8x+5\)

  \(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\) 

Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và  \(x^2=0\) 

                      \(\Leftrightarrow x=1\) và   x=0

Vậy GTNN của BT =1 tại....

b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\) 

  \(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\) 

Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\) 

Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\) 

Bình luận (0)
LP
5 tháng 7 2019 lúc 7:03

Nguyễn Văn Tuấn Anh nếu x = 1 thì gtnn = 2, nếu x = 0 thì gtnn = 5 chớ.

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TK
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
QV
Xem chi tiết
HT
Xem chi tiết
PP
Xem chi tiết