DA

tìm giá trị nhỏ nhất của C=( x+√x+17/√x +x) với x>=0. Help me, thanks.

AH
15 tháng 1 2024 lúc 19:18

Lời giải:

\(C=\frac{x+\sqrt{x}+17}{x+\sqrt{x}}=1+\frac{17}{x+\sqrt{x}}\)

Để $C$ nhỏ nhất thì $\frac{17}{x+\sqrt{x}$ nhỏ nhất

Tức là $x+\sqrt{x}$ lớn nhất với mọi $x\geq 0$

Khi $x\geq 0$ thì ta không thể tìm GTLN của $x+\sqrt{x}$ vì cứ cho $x$ tăng vô hạn thì $x+\sqrt{x}$ cũng tăng vô hạn.

Vì vậy biểu thức C không có min bạn nhé. Bạn cần bổ sung thêm điều kiện khác về $x$ để tìm.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
MB
Xem chi tiết
H24
Xem chi tiết