\(B=\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+7\right)\)
\(=\left(x^2+5x+5\right)^2+2\left(x^2+5x+5\right)+1-1\)
\(=\left(x^2+5x+6\right)^2-1\ge-1\)
Vậy GTNN là - 1
Dấu = xảy ra khi \(x^2+5x+6=0\)
\(\Leftrightarrow\left(x^2+3x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)