\(B=\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+7\right)\)
Đặt \(x^2+5x+6=t\) nên \(B=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\forall t\) có GTNN là - 1
Dấu "=" xảy ra \(\Leftrightarrow x^2+5x+6=0\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy \(B_{min}=-1\) tại \(\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)