NK

tìm giá trị nhỏ nhất của biểu thứcM= (3x-1/2)^2-4

 

H24
23 tháng 3 2020 lúc 13:37

                                                      Bài giải

\(M=\left(3x-\frac{1}{2}\right)^2-4\)

Do \(\left(3x-\frac{1}{2}\right)^2\ge0\text{ với mọi }x\text{ }\Rightarrow\text{ }\left(3x-\frac{1}{2}\right)^2-4\ge-4\)

Dấu " = " xảy ra khi \(3x-\frac{1}{2}=0\text{ }\Rightarrow\text{ }3x=\frac{1}{2}\text{ }\Rightarrow\text{ }x=\frac{1}{6}\)

Vậy GTNN của \(M=-4\text{ khi }x=\frac{1}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
DH
Xem chi tiết
T5
Xem chi tiết
H24
Xem chi tiết
MC
Xem chi tiết
MN
Xem chi tiết
NN
Xem chi tiết
IY
Xem chi tiết
HN
Xem chi tiết