NT

Tìm giá trị nhỏ nhất của biểu thức:A=\(\frac{x^2-1}{x^2+1}\)

Giúp mk với!

KN
4 tháng 5 2019 lúc 21:48

Ta có :

\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)

\(=1-\frac{2}{x^2+1}\)

Mà \(A_{min}\Rightarrow\frac{2}{x^2+1}_{max};x^2+1\in N^∗\)

\(\Rightarrow x^2+1_{min}\Rightarrow x^2+1=1\)

\(\Rightarrow x^2=0\Rightarrow x=0\)

Vậy \(A_{min}=\frac{-1}{1}=-1\forall x=0\)

Không chắc nha, em mới lớp 6 :3

Bình luận (0)
H24
4 tháng 5 2019 lúc 21:57

\(A=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)

\(\text{Biểu thức }A\text{ nhận giá trị nhỏ nhất khi : }x^2+1\text{ nhận giá trị bé nhất}\)

\(\Rightarrow\text{ }x^2\text{ nhận giá trị bé nhất }\)   \(\Rightarrow\text{ }x^2=1\)

\(\text{Vậy ta có : }\)

\(A=1-\frac{2}{x^2+1}=1-\frac{2}{1+1}=1-\frac{2}{2}=1-1=0\)

\(\text{Vậy giá trị nhỏ nhất của biểu thức }A\text{ là }1\)

Bình luận (0)
NM
4 tháng 5 2019 lúc 22:01

Ta có: \(\frac{x^2-1}{x^2+1}\)

\(=\frac{x^2+1-2}{x^2+1}\)

\(=\frac{x^2+1}{x^2+1}+\frac{-2}{x^2+1}\)

\(=1+\frac{-2}{x^2+1}\)

Vì \(x^2\ge0\Leftrightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}\le1\Leftrightarrow\frac{-2}{x^2+1}\ge-2\)

\(\Leftrightarrow1+\frac{-2}{x^2+1}\ge-2+1\Leftrightarrow A\ge-1\)

Vậy Amin = -1

Bình luận (0)

Các câu hỏi tương tự
LQ
Xem chi tiết
HH
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết
NP
Xem chi tiết
PS
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
KY
Xem chi tiết