\(x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy GTNN của bt trên = 3/4 <=> x = - 5/2
Trả lời :
\(x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{28}{4}=\left(x^2+2.\frac{5}{x}+\frac{25}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=\frac{-5}{2}\)
Vậy GTNN của biểu thức là \(\frac{3}{4}\Leftrightarrow x=\frac{-5}{2}\)
x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
Vậy GTNN của biểu thức = 3/4 <=> x = -5/2