\(A=5x^2+y^2-4xy-2y+2026\)
\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}\left(y^2-10y+25\right)+2021\)
\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2021\ge2021\)
- Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{5}y=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
- Vậy \(MinA=2021\)
A=5x2+y2−4xy−2y+2026A=5x2+y2−4xy−2y+2026
=5(x−25y)2+15(y−5)2+2021≥2021=5(x−25y)2+15(y−5)2+2021≥2021
- Dấu "=" xảy ra