\(Q=\left(x^2\right)^2+2.x^2.x+x^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow Q=\left(x^2+x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)
Vậy GTNN của Q là \(\frac{9}{16}\) khi \(x=\frac{-1}{2}\)