PN

Tìm giá trị nhỏ nhất của biểu thức Q= x2+2y2+2xy - 2x - 6y +2015

TM
9 tháng 7 2017 lúc 22:14

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

Bình luận (0)
NT
30 tháng 10 2017 lúc 17:07

2015 nha bạn.

Bình luận (0)
NN
20 tháng 4 2020 lúc 9:55

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2-4y+4\right)+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Dâu'=' xảy ra khi và chỉ khi 

\(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy giá trị nhỏ nhất của Q bằng 2010, xảy ra khi x=-1,y=2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NG
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
HN
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết